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Abstract:  We employ the numerically exact superposition T-matrix 
method to perform extensive computations of electromagnetic scattering by 
small volume elements filled with 8 randomly distributed wavelength-sized 
spherical particles.  The results of these computations are used to examine 
quantitatively the conditions of applicability of the single-scattering 
approximation (SSA).  We show that one may need large inter-particle 
distances and low packing densities in order to make the SSA sufficiently 
accurate.    
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1.  Introduction  

The far-field single-scattering approximation (SSA) is widely used in analyses and 
interpretation of laboratory measurements of light scattering by tenuous collections of natural 
and artificial small particles (e.g., [1–10] and references therein).  A detailed derivation of the 
SSA from the exact Foldy–Lax equations has been given in [11, 12].  These publications also 
provide a qualitative theoretical analysis of the range of applicability of the SSA and a limited 
numerical illustration based on exact T-matrix results for randomly oriented two-sphere 
clusters with touching and separated components.   

The main objective of this paper is to take advantage of the increased power of scientific 
workstations in order to extend and render more concrete and quantitative the previous 
analysis of the range of applicability of the SSA.  Specifically, we apply the superposition T-
matrix method (STMM) [13–15] to a small volume element filled with eight randomly 
distributed wavelength-sized particles.  By keeping the size of the particles fixed and 
increasing the average interparticle separation, we illustrate the gradual disappearance of 
various multiple-scattering effects and the onset of the single-scattering regime.  These results 
provide a direct quantitative estimate of what inter-particle separation is necessary in order to 
make the SSA accurate to within a prescribed numerical margin.     

In order to avoid redundancy and save space, we take advantage of the on-line availability 
of [14] and use exactly the same terminology and notation. 

2.  Numerical results 

As shown in Fig. 1, we assume that eight identical spherical particles are distributed randomly 
throughout a spherical volume with a radius R much greater than the particle radius r.  The 
size parameter of the particles is fixed at k1r = 4, where k1 is the wave number in the 
surrounding medium; whereas, the size parameter of the spherical volume is varied from k1R 
= 12 to k1R = 72 in steps of 6.  This procedure yields particle volume concentrations ρ  
ranging from 29.6% down to 0.14%.  The relative refractive index of the particles is fixed at 
1.32. 

The arrangement of the eight particles inside the k1R = 12 volume is random but such that 
each particle is in contact with at least one other particle.  The other ten particulate volumes 
with k1R = 18, 24, …, 72 are obtained by uniformly scaling all particle coordinates of the k1R 
= 12 volume while keeping the size of the particles fixed.  This procedure is illustrated in Fig. 
1, which shows the original k1R = 12 volume element and the derivative k1R = 24 volume 
element.   

k1R = 24

k1R = 12

 

Fig. 1. Spherical volume elements filled with eight randomly positioned, identical particles.  
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To simulate light scattering by a statistically random volume element, one needs an 
efficient way of averaging the computed scattering properties over very many different 
configurations of a multi-particle group.  The approach adopted for this study is to use only 
one randomly configured 8-particle group and average over all possible orientations of this 
configuration with respect to the laboratory coordinate system [16].  This procedure yields in 
effect an infinite continuous set of random realizations of the 8-particle group and enables one 
to take full advantage of the highly efficient semi-analytical orientation averaging technique 
afforded by the STMM [14, 15].  

We assume that the statistically random volume element is illuminated by a plane 
electromagnetic wave or a parallel quasi-monochromatic beam of light propagating in the 
direction incn̂  (Fig. 2).  The observation direction is specified by the unit vector .ˆ scan    Since 
all scattering properties are averaged over the uniform orientation distribution of a multi-
particle group, we can simplify the discussion by assuming that the incidence direction 
coincides with the positive direction of the z-axis of the laboratory reference frame and that  

.0sca =ϕ   Then the scattering direction can be uniquely characterized by the scattering angle 
scaθΘ =  and the transformation of the Stokes parameters of the incident light into those of the 

light scattered in the observation direction can be written in terms of the so-called normalized 
Stokes scattering matrix [14]:   
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The specific block-diagonal structure of the scattering matrix is confirmed by the T-matrix 
results: all scattering matrix elements denoted in Eq. (1) by a zero have been found to be at 
least an order of magnitude smaller than the smallest non-zero element (in the absolute-value 
sense).  The (1,1) element, called the phase function, is normalized according to 
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The results of our extensive T-matrix computations are summarized in Figs. 3–5.  Figure 3 
depicts the dimensionless extinction cross section ratio defined as  
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Fig. 2. Electromagnetic scattering by a small volume element.  
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and the forward-scattering phase function ratio defined as 
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This figure also quantifies the particle volume concentration (or packing density) ρ  and the 
quantity 〉〈dk1  as functions of ,1Rk  where 〉〈d  is the average distance between the sphere 
centers.  Figure 4 shows the phase function and the ratios of the non-zero Stokes scattering 
matrix elements to the phase function for the various volume elements as well as for a single 
sphere.  Figure 5 details the phase functions at forward and near-forward scattering directions 
as well as depicts the quantity  

          )].()([ 212
1 ΘΘ aa −               (5) 

The latter describes the angular distribution of the cross-polarized scattered intensity provided 
that the incident light is fully linearly polarized in the xz plane. 

3.  Discussion  

The gist of the SSA is that one can neglect the response of each particle in a volume element 
to the fields scattered by all the other particles and assume that each particle is excited only by 
the external incident field.  For the SSA to be applicable, the volume element must be 
optically thin and the inter-particle separation must be sufficiently large.  The threshold 
optical thickness value for widely separated particles can be determined using an approximate 
approach based on the radiative transfer theory [12].  However, exact computations of 
electromagnetic scattering such as those presented in Figs. 3–5 are needed to determine the 
requisite minimal inter-particle distance. 

According to the simple SSA [11, 12], the extinction cross section ratio defined by Eq. (3) 
must be equal to one.  Furthermore, according to the modified uncorrelated SSA (MUSSA), 
the elements of the normalized Stokes scattering matrix for a volume element must be equal to 
those for a single sphere.  Figures 3 and 4 demonstrate the departure from these requisite 
values for different packing densities. They show that the particle packing density should be 
smaller than 1% and 〉〈dk1  should be greater than 30 for the SSA for there to be negligible 
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Fig. 3. Ratios defined by Eqs. (3) and (4).  Also shown are the ρ  and 〉〈dk1  values 
corresponding to k1R = 12, 24, 36, 48, 60, and 72.    
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differences when using the SSA.  
While quite large separations are needed for the accuracy of the SSA to be within a few 

percent, the applicability of the SSA ultimately depends on the applications and required 
tolerances.  For many particle characterization applications such tolerances are requisite, but 
for other applications, the tolerances may be more relaxed.  For example, the ratios –b1/a1 and 
b2/a1 tend to retain the basic features of the single spherical particle to rather large packing 
densities.  For these ratios, the frequency of angular oscillations remains predominantly the 
same, but the amplitude of oscillations decreases with increasing packing density until the 
largest density is reached, in which case the scattering properties no longer retain the obvious 
single-particle features.  The retention of the single-particle frequencies for relatively large 
densities may potentially be used to size the individual particles in this cluster from these 
Stokes-matrix element ratios. In this application the tolerance of the SSA appears relatively 
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Fig. 4. Elements of the normalized Stokes scattering matrix. 
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relaxed. 
An important effect caused by multiple scattering is coherent backscattering (or weak 

localization of electromagnetic waves) [16, 17].  This effect can be exhibited especially 
clearly by the quantity defined by Eq. (5) since the cross-polarized scattered intensity is 
identically equal to zero for a single spherical particle.  The right-hand panel of Fig. 5 shows 
that the backscattering peak has the largest amplitude and width for k1R = 12.  With increasing 
inter-particle separation, the amplitude and the width of the peak decrease, thereby 
corroborating the multiple-scattering origin and the interference nature of coherent 
backscattering.  Obviously, it takes very low particle packing densities to fully extinguish this 
effect. 

A fundamental single-scattering phenomenon exhibited by multi-particle groups is the 
forward-scattering interference illustrated by the left-hand panel of Fig. 5 and discussed in 
detail in [11, 12, 16].  For widely separated particles, the ratio defined by Eq. (4) must be 
equal to one.  However, Fig. 3 shows that this ratio approaches the asymptotic value of one 
with increasing k1R even slower than the extinction cross section ratio.  The angular width of 
the forward-scattering interference peak is inversely proportional to .1 〉〈dk   Figure 5 
obviously indicates that 〉〈dk1  must be much greater than 60 in order to ensure that the 
interference peak is narrow enough and does not affect the interpretation of laboratory 
measurements in terms of the MUSSA. 

4.  Conclusion 

Our numerically exact T-matrix results demonstrate that one may need large inter-particle 
distances and low packing densities in order to make the SSA sufficiently accurate for groups 
of wavelength-sized particles.  This implies that one should exercise caution when interpreting 
laboratory data such as those presented in [1–10].   

Obviously, more work still needs to be done in order to extend our analysis to groups 
consisting of larger and possibly polydisperse particles.  The rapidly increasing efficiency of 
scientific workstations should make this extension feasible in the very near future.      
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